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THE HUMAN GENOME

A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of
the human genome was generated by the whole-genome shotgun sequencing
method. The 14.8-billion bp DNA sequence was generated over 9 months from
27,271,853 high-quality sequence reads (5.11-fold coverage of the genome)
from both ends of plasmid clones made from the DNA of five individuals. Two
assembly strategies—a whole-genome assembly and a regional chromosome
assembly—were used, each combining sequence data from Celera and the
publicly funded genome effort. The public data were shredded into 550-bp
segments to create a 2.9-fold coverage of those genome regions that had been
sequenced, without including biases inherent in the cloning and assembly
procedure used by the publicly funded group. This brought the effective cov-
erage in the assemblies to eightfold, reducing the number and size of gaps in
the final assembly over what would be obtained with 5.11-fold coverage. The
two assembly strategies yielded very similar results that largely agree with
independent mapping data. The assemblies effectively cover the euchromatic
regions of the human chromosomes. More than 90% of the genome is in
scaffold assemblies of 100,000 bp or more, and 25% of the genome is in
scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed
26,588 protein-encoding transcripts for which there was strong corroborating
evidence and an additional ~12,000 computationally derived genes with mouse
matches or other weak supporting evidence. Although gene-dense clusters are
obvious, almost half the genes are dispersed in low G+C sequence separated
by large tracts of apparently noncoding sequence. Only 1.1% of the genome
is spanned by exons, whereas 24% is in introns, with 75% of the genome being
intergenic DNA. Duplications of segmental blocks, ranging in size up to chro-
mosomal lengths, are abundant throughout the genome and reveal a complex
evolutionary history. Comparative genomic analysis indicates vertebrate ex-
pansions of genes associated with neuronal function, with tissue-specific de-
velopmental regulation, and with the hemostasis and immune systems. DNA
sequence comparisons between the consensus sequence and publicly funded
genome data provided locations of 2.1 million single-nucleotide polymorphisms
(SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per
1250 on average, but there was marked heterogeneity in the level of poly-
morphism across the genome. Less than 1% of all SNPs resulted in variation in
proteins, but the task of determining which SNPs have functional consequences

remains an open challenge.

Decoding of the DNA that constitutes the
human genome has been widely anticipated
for the contribution it will make toward un-
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derstanding human evolution, the causation
of disease, and the interplay between the
environment and heredity in defining the hu-
man condition. A project with the goal of
determining the complete nucleotide se-
quence of the human genome was first for-
mally proposed in 1985 (/). In subsequent
years, the idea met with mixed reactions in
the scientific community (2). However, in
1990, the Human Genome Project (HGP) was
officially initiated in the United States under
the direction of the National Institutes of
Health and the U.S. Department of Energy
with a 15-year, $3 billion plan for completing
the genome sequence. In 1998 we announced
our intention to build a unique genome-
sequencing facility, to determine the se-
quence of the human genome over a 3-year
period. Here we report the penultimate mile-
stone along the path toward that goal, a nearly
complete sequence of the euchromatic por-
tion of the human genome. The sequencing
was performed by a whole-genome random
shotgun method with subsequent assembly of
the sequenced segments.

The modern history of DNA sequencing
began in 1977, when Sanger reported his meth-
od for determining the order of nucleotides of
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DNA using chain-terminating nucleotide ana-
logs (3). In the same year, the first human gene
was isolated and sequenced (4). In 1986, Hood
and co-workers (5) described an improvement
in the Sanger sequencing method that included
attaching fluorescent dyes to the nucleotides,
which permitted them to be sequentially read
by a computer. The first automated DNA se-
quencer, developed by Applied Biosystems in
California in 1987, was shown to be successful
when the sequences of two genes were obtained
with this new technology (6). From early se-
quencing of human genomic regions (7), it
became clear that cDNA sequences (which are
reverse-transcribed from RNA) would be es-
sential to annotate and validate gene predictions
in the human genome. These studies were the
basis in part for the development of the ex-
pressed sequence tag (EST) method of gene
identification (8), which is a random selection,
very high throughput sequencing approach to
characterize cDNA libraries. The EST method
led to the rapid discovery and mapping of hu-
man genes (9). The increasing numbers of hu-
man EST sequences necessitated the develop-
ment of new computer algorithms to analyze
large amounts of sequence data, and in 1993 at
The Institute for Genomic Research (TIGR), an
algorithm was developed that permitted assem-
bly and analysis of hundreds of thousands of
ESTs. This algorithm permitted characteriza-
tion and annotation of human genes on the basis
of 30,000 EST assemblies (10).

The complete 49-kbp bacteriophage lamb-
da genome sequence was determined by a
shotgun restriction digest method in 1982
(11). When considering methods for sequenc-
ing the smallpox virus genome in 1991 (12),
a whole-genome shotgun sequencing method
was discussed and subsequently rejected ow-
ing to the lack of appropriate software tools
for genome assembly. However, in 1994,
when a microbial genome-sequencing project
was contemplated at TIGR, a whole-genome
shotgun sequencing approach was considered
possible with the TIGR EST assembly algo-
rithm. In 1995, the 1.8-Mbp Haemophilus
influenzae genome was completed by a
whole-genome shotgun sequencing method
(13). The experience with several subsequent
genome-sequencing efforts established the
broad applicability of this approach (74, 15).

A key feature of the sequencing approach
used for these megabase-size and larger ge-
nomes was the use of paired-end sequences
(also called mate pairs), derived from sub-
clone libraries with distinct insert sizes and
cloning characteristics. Paired-end sequences
are sequences 500 to 600 bp in length from
both ends of double-stranded DNA clones of
prescribed lengths. The success of using end
sequences from long segments (18 to 20 kbp)
of DNA cloned into bacteriophage lambda in
assembly of the microbial genomes led to the
suggestion (/6) of an approach to simulta-
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neously map and sequence the human ge-
nome by means of end sequences from 150-
kbp bacterial artificial chromosomes (BACs)
(17, 18). The end sequences spanned by
known distances provide long-range continu-
ity across the genome. A modification of the
BAC end-sequencing (BES) method was ap-
plied successfully to complete chromosome 2
from the Arabidopsis thaliana genome (19).

In 1997, Weber and Myers (20) proposed
whole-genome shotgun sequencing of the
human genome. Their proposal was not well
received (21). However, by early 1998, as
less than 5% of the genome had been se-
quenced, it was clear that the rate of progress
in human genome sequencing worldwide
was very slow (22), and the prospects for
finishing the genome by the 2005 goal were
uncertain.

In early 1998, PE Biosystems (now Applied
Biosystems) developed an automated, high-
throughput capillary DNA sequencer, subse-
quently called the ABI PRISM 3700 DNA
Analyzer. Discussions between PE Biosystems
and TIGR scientists resulted in a plan to under-
take the sequencing of the human genome with
the 3700 DNA Analyzer and the whole-genome
shotgun sequencing techniques developed at
TIGR (23). Many of the principles of operation
of a genome-sequencing facility were estab-
lished in the TIGR facility (24). However, the
facility envisioned for Celera would have a
capacity roughly 50 times that of TIGR, and
thus new developments were required for sam-
ple preparation and tracking and for whole-
genome assembly. Some argued that the re-
quired 150-fold scale-up from the H. influenzae
genome to the human genome with its complex
repeat sequences was not feasible (25). The
Drosophila melanogaster genome was thus
chosen as a test case for whole-genome assem-
bly on a large and complex eukaryotic genome.
In collaboration with Gerald Rubin and the
Berkeley Drosophila Genome Project, the nu-
cleotide sequence of the 120-Mbp euchromatic
portion of the Drosophila genome was deter-
mined over a 1-year period (26—28). The Dro-
sophila genome-sequencing effort resulted in
two key findings: (i) that the assembly algo-
rithms could generate chromosome assemblies
with highly accurate order and orientation with
substantially less than 10-fold coverage, and (ii)
that undertaking multiple interim assemblies in
place of one comprehensive final assembly was
not of value.

These findings, together with the dramatic
changes in the public genome effort subsequent
to the formation of Celera (29), led to a modi-
fied whole-genome shotgun sequencing ap-
proach to the human genome. We initially pro-
posed to do 10-fold sequence coverage of the
genome over a 3-year period and to make in-
terim assembled sequence data available quar-
terly. The modifications included a plan to per-
form random shotgun sequencing to ~5-fold
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coverage and to use the unordered and unori-
ented BAC sequence fragments and subassem-
blies published in GenBank by the publicly
funded genome effort (30) to accelerate the
project. We also abandoned the quarterly an-
nouncements in the absence of interim assem-
blies to report.

Although this strategy provided a reason-
able result very early that was consistent with a
whole-genome shotgun assembly with eight-
fold coverage, the human genome sequence is
not as finished as the Drosophila genome was
with an effective 13-fold coverage. However, it
became clear that even with this reduced cov-
erage strategy, Celera could generate an accu-
rately ordered and oriented scaffold sequence of
the human genome in less than 1 year. Human
genome sequencing was initiated 8 September
1999 and completed 17 June 2000. The first
assembly was completed 25 June 2000, and the
assembly reported here was completed 1 Octo-
ber 2000. Here we describe the whole-genome
random shotgun sequencing effort applied to
the human genome. We developed two differ-
ent assembly approaches for assembling the ~3
billion bp that make up the 23 pairs of chromo-
somes of the Homo sapiens genome. Any Gen-
Bank-derived data were shredded to remove
potential bias to the final sequence from chi-
meric clones, foreign DNA contamination, or
misassembled contigs. Insofar as a correctly
and accurately assembled genome sequence
with faithful order and orientation of contigs
is essential for an accurate analysis of the
human genetic code, we have devoted a con-
siderable portion of this manuscript to the
documentation of the quality of our recon-
struction of the genome. We also describe our
preliminary analysis of the human genetic
code on the basis of computational methods.
Figure 1 (see fold-out chart associated with
this issue; files for each chromosome can be
found in Web fig. 1 on Science Online at
www.sciencemag.org/cgi/content/full/291/
5507/1304/DC1) provides a graphical over-
view of the genome and the features encoded
in it. The detailed manual curation and inter-
pretation of the genome are just beginning.

To aid the reader in locating specific an-
alytical sections, we have divided the paper
into seven broad sections. A summary of the
major results appears at the beginning of each
section.

1 Sources of DNA and Sequencing Methods

2 Genome Assembly Strategy and

Characterization

Gene Prediction and Annotation

Genome Structure

Genome Evolution

A Genome-Wide Examination of

Sequence Variations

7 An Overview of the Predicted Protein-
Coding Genes in the Human Genome

8 Conclusions
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1 Sources of DNA and Sequencing
Methods

Summary. This section discusses the rationale
and ethical rules governing donor selection to
ensure ethnic and gender diversity along with
the methodologies for DNA extraction and li-
brary construction. The plasmid library con-
struction is the first critical step in shotgun
sequencing. If the DNA libraries are not uni-
form in size, nonchimeric, and do not randomly
represent the genome, then the subsequent steps
cannot accurately reconstruct the genome se-
quence. We used automated high-throughput
DNA sequencing and the computational infra-
structure to enable efficient tracking of enor-
mous amounts of sequence information (27.3
million sequence reads; 14.9 billion bp of se-
quence). Sequencing and tracking from both
ends of plasmid clones from 2-, 10-, and 50-kbp
libraries were essential to the computational
reconstruction of the genome. Our evidence
indicates that the accurate pairing rate of end
sequences was greater than 98%.

Various policies of the United States and the
World Medical Association, specifically the
Declaration of Helsinki, offer recommenda-
tions for conducting experiments with human
subjects. We convened an Institutional Re-
view Board (IRB) (37) that helped us estab-
lish the protocol for obtaining and using hu-
man DNA and the informed consent process
used to enroll research volunteers for the
DNA-sequencing studies reported here. We
adopted several steps and procedures to pro-
tect the privacy rights and confidentiality of
the research subjects (donors). These includ-
ed a two-stage consent process, a secure ran-
dom alphanumeric coding system for speci-
mens and records, circumscribed contact with
the subjects by researchers, and options for
off-site contact of donors. In addition, Celera
applied for and received a Certificate of Con-
fidentiality from the Department of Health
and Human Services. This Certificate autho-
rized Celera to protect the privacy of the
individuals who volunteered to be donors as
provided in Section 301(d) of the Public
Health Service Act 42 U.S.C. 241(d).

Celera and the IRB believed that the ini-
tial version of a completed human genome
should be a composite derived from multiple
donors of diverse ethnic backgrounds Pro-
spective donors were asked, on a voluntary
basis, to self-designate an ethnogeographic
category (e.g., African-American, Chinese,
Hispanic, Caucasian, etc.). We enrolled 21
donors (32).

Three basic items of information from
each donor were recorded and linked by con-
fidential code to the donated sample: age,
sex, and self-designated ethnogeographic
group. From females, ~130 ml of whole,
heparinized blood was collected. From males,
~130 ml of whole, heparinized blood was

SCIENCE www.sciencemag.org



collected, as well as five specimens of semen,
collected over a 6-week period. Permanent
lymphoblastoid cell lines were created by
Epstein-Barr virus immortalization. DNA
from five subjects was selected for genomic
DNA sequencing: two males and three fe-
males—one African-American, one Asian-
Chinese, one Hispanic-Mexican, and two
Caucasians (see Web fig. 2 on Science Online
at www.sciencemag.org/cgi/content/291/5507/
1304/DC1). The decision of whose DNA to
sequence was based on a complex mix of fac-
tors, including the goal of achieving diversity as
well as technical issues such as the quality of
the DNA libraries and availability of immortal-
ized cell lines.

1.1 Library construction and
sequencing

Central to the whole-genome shotgun sequenc-
ing process is preparation of high-quality plas-
mid libraries in a variety of insert sizes so that
pairs of sequence reads (mates) are obtained,
one read from both ends of each plasmid insert.
High-quality libraries have an equal representa-
tion of all parts of the genome, a small number
of clones without inserts, and no contamination
from such sources as the mitochondrial genome
and Escherichia coli genomic DNA. DNA from
each donor was used to construct plasmid librar-
ies in one or more of three size classes: 2 kbp, 10
kbp, and 50 kbp (Table 1) (33).

In designing the DNA-sequencing pro-
cess, we focused on developing a simple
system that could be implemented in a robust
and reproducible manner and monitored ef-
fectively (Fig. 2) (34).

Current sequencing protocols are based on

Table 1. Celera-generated data input into assembly.

THE HUMAN GENOME

the dideoxy sequencing method (35), which
typically yields only 500 to 750 bp of sequence
per reaction. This limitation on read length has
made monumental gains in throughput a pre-
requisite for the analysis of large eukaryotic
genomes. We accomplished this at the Celera
facility, which occupies about 30,000 square
feet of laboratory space and produces sequence
data continuously at a rate of 175,000 total
reads per day. The DNA-sequencing facility is
supported by a high-performance computation-
al facility (36).

The process for DNA sequencing was mod-
ular by design and automated. Intermodule
sample backlogs allowed four principal
modules to operate independently: (i) li-
brary transformation, plating, and colony
picking; (ii) DNA template preparation;
(iii) dideoxy sequencing reaction set-up
and purification; and (iv) sequence deter-
mination with the ABI PRISM 3700 DNA
Analyzer. Because the inputs and outputs
of each module have been carefully
matched and sample backlogs are continu-
ously managed, sequencing has proceeded
without a single day’s interruption since the
initiation of the Drosophila project in May
1999. The ABI 3700 is a fully automated
capillary array sequencer and as such can
be operated with a minimal amount of
hands-on time, currently estimated at about
15 min per day. The capillary system also
facilitates correct associations of sequenc-
ing traces with samples through the elimi-
nation of manual sample loading and lane-
tracking errors associated with slab gels.
About 65 production staff were hired and
trained, and were rotated on a regular basis

through the four production modules. A
central laboratory information management
system (LIMS) tracked all sample plates by
unique bar code identifiers. The facility was
supported by a quality control team that per-
formed raw material and in-process testing
and a quality assurance group with responsi-
bilities including document control, valida-
tion, and auditing of the facility. Critical to
the success of the scale-up was the validation
of all software and instrumentation before
implementation, and production-scale testing
of any process changes.

1.2 Trace processing

An automated trace-processing pipeline has
been developed to process each sequence file
(37). After quality and vector trimming, the
average trimmed sequence length was 543
bp, and the sequencing accuracy was expo-
nentially distributed with a mean of 99.5%
and with less than 1 in 1000 reads being less
than 98% accurate (26). Each trimmed se-
quence was screened for matches to contam-
inants including sequences of vector alone, E.
coli genomic DNA, and human mitochondri-
al DNA. The entire read for any sequence
with a significant match to a contaminant was
discarded. A total of 713 reads matched E.
coli genomic DNA and 2114 reads matched
the human mitochondrial genome.

1.3 Quality assessment and control

The importance of the base-pair level ac-
curacy of the sequence data increases as the
size and repetitive nature of the genome to
be sequenced increases. Each sequence
read must be placed uniquely in the ge-

Number of reads for different insert libraries

Total number of

Individual base pairs
2 kbp 10 kbp 50 kbp Total P
No. of sequencing reads A 0 0 2,767,357 2,767,357 1,502,674,851
B 11,736,757 7,467,755 66,930 19,271,442 10,464,393,006
C 853,819 881,290 0 1,735,109 942,164,187
D 952,523 1,046,815 0 1,999,338 1,085,640,534
F 0 1,498,607 0 1,498,607 813,743,601
Total 13,543,099 10,894,467 2,834,287 27,271,853 14,808,616,179
Fold sequence coverage A 0 0 0.52 0.52
(2.9-Gb genome) B 2.20 1.40 0.01 361
C 0.16 117 0 0.32
D 0.18 0.20 0 0.37
F 0 0.28 0 0.28
Total 2.54 2.04 0.53 5.11
Fold clone coverage A 0 0 18.39 18.39
B 2.96 11.26 0.44 14.67
C 0.22 1.33 0 1.54
D 0.24 1.58 0 1.82
F 0 2.26 0 2.26
Total 3.42 16.43 18.84 38.68
Insert size* (mean) Average 1,951 bp 10,800 bp 50,715 bp
Insert size* (SD) Average 6.10% 8.10% 14.90%
% Matest Average 74.50 80.80 75.60

*Insert size and SD are calculated from assembly of mates on contigs.
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1% Mates is based on laboratory tracking of sequencing runs.
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nome, and even a modest error rate can
reduce the effectiveness of assembly. In
addition, maintaining the validity of mate-
pair information is absolutely critical for
the algorithms described below. Procedural
controls were established for maintaining
the validity of sequence mate-pairs as se-
quencing reactions proceeded through the
process, including strict rules built into the
LIMS. The accuracy of sequence data pro-
duced by the Celera process was validated
in the course of the Drosophila genome
project (26). By collecting data for the

Potential Entry Points

THE HUMAN GENOME

entire human genome in a single facility,
we were able to ensure uniform quality
standards and the cost advantages associat-
ed with automation, an economy of scale,
and process consistency.

2 Genome Assembly Strategy and
Characterization

Summary. We describe in this section the two
approaches that we used to assemble the ge-
nome. One method involves the computational
combination of all sequence reads with shred-
ded data from GenBank to generate an indepen-

dent, nonbiased view of the genome. The sec-
ond approach involves clustering all of the frag-
ments to a region or chromosome on the basis
of mapping information. The clustered data
were then shredded and subjected to computa-
tional assembly. Both approaches provided es-
sentially the same reconstruction of assembled
DNA sequence with proper order and orienta-
tion. The second method provided slightly
greater sequence coverage (fewer gaps) and
was the principal sequence used for the analysis
phase. In addition, we document the complete-
ness and correctness of this assembly process
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Fig. 2. Flow diagram for sequencing pipeline. Samples are received,
selected, and processed in compliance with standard operating proce-
dures, with a focus on quality within and across departments. Each
process has defined inputs and outputs with the capability to exchange
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samples and data with both internal and external entities according to
defined quality guidelines. Manufacturing pipeline processes, products,
quality control measures, and responsible parties are indicated and are
described further in the text.
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and provide a comparison to the public genome
sequence, which was reconstructed largely by
an independent BAC-by-BAC approach. Our
assemblies effectively covered the euchromatic
regions of the human chromosomes. More than
90% of the genome was in scaffold assemblies
of 100,000 bp or greater, and 25% of the ge-
nome was in scaffolds of 10 million bp or
larger.

Shotgun sequence assembly is a classic
example of an inverse problem: given a set
of reads randomly sampled from a target
sequence, reconstruct the order and the po-
sition of those reads in the target. Genome
assembly algorithms developed for Dro-
sophila have now been extended to assemble
the ~25-fold larger human genome. Celera as-
semblies consist of a set of contigs that are
ordered and oriented into scaffolds that are then
mapped to chromosomal locations by using
known markers. The contigs consist of a col-
lection of overlapping sequence reads that pro-
vide a consensus reconstruction for a contigu-
ous interval of the genome. Mate pairs are a
central component of the assembly strategy.
They are used to produce scaffolds in which the
size of gaps between consecutive contigs is
known with reasonable precision. This is ac-
complished by observing that a pair of reads,
one of which is in one contig, and the other of
which is in another, implies an orientation and
distance between the two contigs (Fig. 3). Fi-
nally, our assemblies did not incorporate all
reads into the final set of reported scaffolds.
This set of unincorporated reads is termed
“chaff,” and typically consisted of reads from
within highly repetitive regions, data from other
organisms introduced through various routes as
found in many genome projects, and data of
poor quality or with untrimmed vector.

Mapped *—%k

Scaffolds:

*
T T T T vt
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2.1 Assembly data sets

We used two independent sets of data for our
assemblies. The first was a random shotgun
data set of 27.27 million reads of average length
543 bp produced at Celera. This consisted
largely of mate-pair reads from 16 libraries
constructed from DNA samples taken from five
different donors. Libraries with insert sizes of 2,
10, and 50 kbp were used. By looking at how
mate pairs from a library were positioned in
known sequenced stretches of the genome, we
were able to characterize the range of insert
sizes in each library and determine a mean and
standard deviation. Table 1 details the number
of reads, sequencing coverage, and clone cov-
erage achieved by the data set. The clone cov-
erage is the coverage of the genome in cloned
DNA, considering the entire insert of each
clone that has sequence from both ends. The
clone coverage provides a measure of the
amount of physical DNA coverage of the ge-
nome. Assuming a genome size of 2.9 Gbp, the
Celera trimmed sequences gave a 5.1 X cover-
age of the genome, and clone coverage was
3.42X%,16.40X, and 18.84X for the 2-, 10-, and
50-kbp libraries, respectively, for a total of
38.7X clone coverage.

The second data set was from the publicly
funded Human Genome Project (PFP) and is
primarily derived from BAC clones (30). The
BAC data input to the assemblies came from a
download of GenBank on 1 September 2000
(Table 2) totaling 4443.3 Mbp of sequence.
The data for each BAC is deposited at one of
four levels of completion. Phase 0 data are a set
of generally unassembled sequencing reads
from a very light shotgun of the BAC, typically
less than 1X. Phase 1 data are unordered as-
semblies of contigs, which we call BAC contigs
or bactigs. Phase 2 data are ordered assemblies
of bactigs. Phase 3 data are complete BAC

STS
* -k *

Genome

A

Scaffold:
A ~——
Read pair (mates)
Contig:

f

Gap (mean & std. dev. Known)

Consensus

Reads (of several haplotypes)

® SNPs
= BAC Fragments

Fig. 3. Anatomy of whole-genome assembly. Overlapping shredded bactig fragments (red lines) and
internally derived reads from five different individuals (black lines) are combined to produce a
contig and a consensus sequence (green line). Contigs are connected into scaffolds (red) by using
mate pair information. Scaffolds are then mapped to the genome (gray line) with STS (blue star)

physical map information.
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sequences. In the past 2 years the PFP has
focused on a product of lower quality and com-
pleteness, but on a faster time-course, by con-
centrating on the production of Phase 1 data
from a 3X to 4X light-shotgun of each BAC
clone.

We screened the bactig sequences for con-
taminants by using the BLAST algorithm
against three data sets: (i) vector sequences
in Univec core (38), filtered for a 25-bp
match at 98% sequence identity at the ends
of the sequence and a 30-bp match internal
to the sequence; (ii) the nonhuman portion
of the High Throughput Genomic (HTG)
Seqgences division of GenBank (39), fil-
tered at 200 bp at 98%; and (iii) the non-
redundant nucleotide sequences from Gen-
Bank without primate and human virus en-
tries, filtered at 200 bp at 98%. Whenever
25 bp or more of vector was found within
50 bp of the end of a contig, the tip up to
the matching vector was excised. Under
these criteria we removed 2.6 Mbp of pos-
sible contaminant and vector from the
Phase 3 data, 61.0 Mbp from the Phase 1
and 2 data, and 16.1 Mbp from the Phase 0
data (Table 2). This left us with a total of
4363.7 Mbp of PFP sequence data 20%
finished, 75% rough-draft (Phase 1 and 2),
and 5% single sequencing reads (Phase 0).
An additional 104,018 BAC end-sequence
mate pairs were also downloaded and in-
cluded in the data sets for both assembly
processes (18).

2.2 Assembly strategies

Two different approaches to assembly were
pursued. The first was a whole-genome as-
sembly process that used Celera data and the
PFP data in the form of additional synthetic
shotgun data, and the second was a compart-
mentalized assembly process that first parti-
tioned the Celera and PFP data into sets
localized to large chromosomal segments and
then performed ab initio shotgun assembly on
each set. Figure 4 gives a schematic of the
overall process flow.

For the whole-genome assembly, the PFP
data was first disassembled or “shredded” into a
synthetic shotgun data set of 550-bp reads that
form a perfect 2X covering of the bactigs. This
resulted in 16.05 million “faux” reads that were
sufficient to cover the genome 2.96X because
of redundancy in the BAC data set, without
incorporating the biases inherent in the PFP
assembly process. The combined data set of
43.32 million reads (8X), and all associated
mate-pair information, were then subjected to
our whole-genome assembly algorithm to pro-
duce a reconstruction of the genome. Neither
the location of a BAC in the genome nor its
assembly of bactigs was used in this process.
Bactigs were shredded into reads because we
found strong evidence that 2.13% of them were
misassembled (40). Furthermore, BAC location

1309



information was ignored because some BACs
were not correctly placed on the PFP physical
map and because we found strong evidence that

THE HUMAN GENOME

at least 2.2% of the BACs contained sequence
data that were not part of the given BAC (41),
possibly as a result of sample-tracking errors

Table 2. GenBank data input into assembly.

Completion phase sequence

Center Statistics
0 1and 2 3

Whitehead Institute/ Number of accession records 2,825 6,533 363
MIT Center for Number of contigs 243,786 138,023 363
Genome Research, Total base pairs 194,490,158 1,083,848,245 48,829,358
USA Total vector masked (bp) 1,553,597 875,618 2,202
Total contaminant masked 13,654,482 4,417,055 98,028

(bp)
Average contig length (bp) 798 7,853 134,516
Washington University, ~Number of accession records 19 3,232 1,300
USA Number of contigs 2,127 61,812 1,300
Total base pairs 1,195,732 561,171,788 164,214,395
Total vector masked (bp) 21,604 270,942 8,287
Total contaminant masked 22,469 1,476,141 469,487

(bp)
Average contig length (bp) 562 9,079 126,319
Baylor College of Number of accession records 0 1,626 363
Medicine, USA Number of contigs 0 44,861 363
Total base pairs 0 265,547,066 49,017,104
Total vector masked (bp) 0 218,769 4,960
Total contaminant masked 0 1,784,700 485,137

(bp)
Average contig length (bp) 0 5919 135,033
Production Sequencing ~ Number of accession records 135 2,043 754
Facility, DOE Joint Number of contigs 7,052 34,938 754
Genome Institute, Total base pairs 8,680,214 294,249,631 60,975,328
USA Total vector masked (bp) 22,644 162,651 7274
Total contaminant masked 665,818 4,642,372 118,387

(bp)
Average contig length (bp) 1,231 8,422 80,867
The Institute of Physical Number of accession records 0 1,149 300
and Chemical Number of contigs 0 25,772 300
Research (RIKEN), Total base pairs 0 182,812,275 20,093,926
Japan Total vector masked (bp) 0 203,792 2,371
Total contaminant masked (bp) 0 308,426 27,781
Average contig length (bp) 0 7,093 66,978
Sanger Centre, UK Number of accession records 0 4,538 2,599
Number of contigs 0 74,324 2,599
Total base pairs 0 689,059,692 246,118,000
Total vector masked (bp) 0 427,326 25,054
Total contaminant masked (bp) 0 2,066,305 374,561
Average contig length (bp) 0 9,271 94,697
Others* Number of accession records 42 1,894 3,458
Number of contigs 5,978 29,898 3,458
Total base pairs 5,564,879 283,358,877 246,474,157
Total vector masked (bp) 57,448 279,477 32,136
Total contaminant masked 575,366 1,616,665 1,791,849

(bp)
Average contig length (bp) 931 9,478 71,277
All centers combinedf Number of accession records 3,021 21,015 9,137
Number of contigs 258,943 409,628 9,137
Total base pairs 209,930,983 3,360,047,574 835,722,268
Total vector masked (bp) 1,655,293 2,438,575 82,284
Total contaminant masked 14,918,135 16,311,664 3,365,230

(bp)
Average contig length (bp) 811 8,203 91,466

*Other centers contributing at least 0.1% of the sequence include: Chinese National Human Genome Center;
Genomanalyse Gesellschaft fuer Biotechnologische Forschung mbH; Genome Therapeutics Corporation; GENOSCOPE;
Chinese Academy of Sciences; Institute of Molecular Biotechnology; Keio University School of Medicine; Lawrence
Livermore National Laboratory; Cold Spring Harbor Laboratory; Los Alamos National Laboratory; Max-Planck Institut fuer
Molekulare, Genetik; Japan Science and Technology Corporation; Stanford University; The Institute for Genomic
Research; The Institute of Physical and Chemical Research, Gene Bank; The University of Oklahoma; University of Texas

Southwestern Medical Center, University of Washington.

shredded into faux reads resulting in 2.96 X coverage of the genome.
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FThe 4,405,700,825 bases contributed by all centers were

(see below). In short, we performed a true, ab
initio whole-genome assembly in which we
took the expedient of deriving additional se-
quence coverage, but not mate pairs, assembled
bactigs, or genome locality, from some exter-
nally generated data.

In the compartmentalized shotgun assembly
(CSA), Celera and PFP data were partitioned
into the largest possible chromosomal segments
or “components” that could be determined with
confidence, and then shotgun assembly was ap-
plied to each partitioned subset wherein the
bactig data were again shredded into faux reads
to ensure an independent ab initio assembly of
the component. By subsetting the data in this
way, the overall computational effort was re-
duced and the effect of interchromosomal dupli-
cations was ameliorated. This also resulted in a
reconstruction of the genome that was relatively
independent of the whole-genome assembly re-
sults so that the two assemblies could be com-
pared for consistency. The quality of the parti-
tioning into components was crucial so that
different genome regions were not mixed to-
gether. We constructed components from (i) the
longest scaffolds of the sequence from each
BAC and (ii) assembled scaffolds of data unique
to Celera’s data set. The BAC assemblies were
obtained by a combining assembler that used the
bactigs and the 5X Celera data mapped to those
bactigs as input. This effort was undertaken as
an interim step solely because the more accurate
and complete the scaffold for a given sequence
stretch, the more accurately one can tile these
scaffolds into contiguous components on the
basis of sequence overlap and mate-pair infor-
mation. We further visually inspected and cu-
rated the scaffold tiling of the components to
further increase its accuracy. For the final CSA
assembly, all but the partitioning was ignored,
and an independent, ab initio reconstruction of
the sequence in each component was obtained
by applying our whole-genome assembly algo-
rithm to the partitioned, relevant Celera data and
the shredded, faux reads of the partitioned, rel-
evant bactig data.

2.3 Whole-genome assembly

The algorithms used for whole-genome as-
sembly (WGA) of the human genome were
enhancements to those used to produce the
sequence of the Drosophila genome reported
in detail in (28).

The WGA assembler consists of a pipeline
composed of five principal stages: Screener,
Overlapper, Unitigger, Scaffolder, and Repeat
Resolver, respectively. The Screener finds
and marks all microsatellite repeats with less
than a 6-bp element, and screens out all
known interspersed repeat elements, includ-
ing Alu, Line, and ribosomal DNA. Marked
regions get searched for overlaps, whereas
screened regions do not get searched, but can
be part of an overlap that involves unscreened
matching segments.
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The Overlapper compares every read
against every other read in search of complete
end-to-end overlaps of at least 40 bp and with
no more than 6% differences in the match.
Because all data are scrupulously vector-
trimmed, the Overlapper can insist on com-
plete overlap matches. Computing the set of
all overlaps took roughly 10,000 CPU hours
with a suite of four-processor Alpha SMPs
with 4 gigabytes of RAM. This took 4 to 5
days in elapsed time with 40 such machines
operating in parallel.

Every overlap computed above is statisti-
cally a 1-in-10'7 event and thus not a coinci-
dental event. What makes assembly combi-
natorially difficult is that while many over-
laps are actually sampled from overlapping
regions of the genome, and thus imply that
the sequence reads should be assembled to-
gether, even more overlaps are actually from
two distinct copies of a low-copy repeated
element not screened above, thus constituting
an error if put together. We call the former
“true overlaps” and the latter “repeat-induced
overlaps.” The assembler must avoid choos-
ing repeat-induced overlaps, especially early
in the process.

We achieve this objective in the Unitig-
ger. We first find all assemblies of reads that
appear to be uncontested with respect to all
other reads. We call the contigs formed from
these subassemblies unitigs (for uniquely as-
sembled contigs). Formally, these unitigs are
the uncontested interval subgraphs of the
graph of all overlaps (42). Unfortunately, al-
though empirically many of these assemblies
are correct (and thus involve only true over-
laps), some are in fact collections of reads
from several copies of a repetitive element
that have been overcollapsed into a single
subassembly. However, the overcollapsed
unitigs are easily identified because their av-
erage coverage depth is too high to be con-
sistent with the overall level of sequence
coverage. We developed a simple statistical
discriminator that gives the logarithm of the
odds ratio that a unitig is composed of unique
DNA or of a repeat consisting of two or more
copies. The discriminator, set to a sufficiently
stringent threshold, identifies a subset of the
unitigs that we are certain are correct. In
addition, a second, less stringent threshold
identifies a subset of remaining unitigs very
likely to be correctly assembled, of which we
select those that will consistently scaffold
(see below), and thus are again almost certain
to be correct. We call the union of these two
sets U-unitigs. Empirically, we found from a
6X simulated shotgun of human chromosome
22 that we get U-unitigs covering 98% of the
stretches of unique DNA that are >2 kbp
long. We are further able to identify the
boundary of the start of a repetitive element
at the ends of a U-unitig and leverage this so
that U-unitigs span more than 93% of all
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singly interspersed Alu elements and other
100-to 400-bp repetitive segments.

The result of running the Unitigger was
thus a set of correctly assembled subcontigs
covering an estimated 73.6% of the human
genome. The Scaffolder then proceeded to
use mate-pair information to link these to-
gether into scaffolds. When there are two or
more mate pairs that imply that a given pair
of U-unitigs are at a certain distance and
orientation with respect to each other, the
probability of this being wrong is again
roughly 1 in 10'°, assuming that mate pairs
are false less than 2% of the time. Thus, one
can with high confidence link together all
U-unitigs that are linked by at least two 2- or
10-kbp mate pairs producing intermediate-
sized scaffolds that are then recursively
linked together by confirming 50-kbp mate
pairs and BAC end sequences. This process
yielded scaffolds that are on the order of
megabase pairs in size with gaps between
their contigs that generally correspond to re-
petitive elements and occasionally to small
sequencing gaps. These scaffolds reconstruct
the majority of the unique sequence within a
genome.

For the Drosophila assembly, we engaged
in a three-stage repeat resolution strategy
where each stage was progressively more

5.11X Celera Reads
39X mate pairs

2.96X Faux
Reads

WGA+Shredder

CSA Assembly

v
WGA Assembly

Shredder

Celera-unique
reads

aggressive and thus more likely to make a
mistake. For the human assembly, we contin-
ued to use the first “Rocks” substage where
all unitigs with a good, but not definitive,
discriminator score are placed in a scaffold
gap. This was done with the condition that
two or more mate pairs with one of their
reads already in the scaffold unambiguously
place the unitig in the given gap. We estimate
the probability of inserting a unitig into an
incorrect gap with this strategy to be less than
1077 based on a probabilistic analysis.

We revised the ensuing “Stones” substage
of the human assembly, making it more like
the mechanism suggested in our earlier work
(43). For each gap, every read R that is placed
in the gap by virtue of its mated pair M being
in a contig of the scaffold and implying R’s
placement is collected. Celera’s mate-pairing
information is correct more than 99% of the
time. Thus, almost every, but not all, of the
reads in the set belong in the gap, and when
a read does not belong it rarely agrees with
the remainder of the reads. Therefore, we
simply assemble this set of reads within the
gap, eliminating any reads that conflict with
the assembly. This operation proved much
more reliable than the one it replaced for the
Drosophila assembly; in the assembly of a
simulated shotgun data set of human chromo-

Public Bactigs
(from 33,421 BACs)

Matcher

Bactigs & Celera pairs
(binned by BAC)

Combining
Assembler

Unique BAC
Scaffolds Scaffolds

Components,

Components,

Components,,

Fig. 4. Architecture of Celera’s two-pronged assembly strategy. Each oval denotes a computation
process performing the function indicated by its label, with the labels on arcs between ovals
describing the nature of the objects produced and/or consumed by a process. This figure
summarizes the discussion in the text that defines the terms and phrases used.
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some 22, all stones were placed correctly.

The final method of resolving gaps is to
fill them with assembled BAC data that cover
the gap. We call this external gap “walking.”
We did not include the very aggressive “Peb-
bles” substage described in our Drosophila
work, which made enough mistakes so as to
produce repeat reconstructions for long inter-
spersed elements whose quality was only
99.62% correct. We decided that for the hu-
man genome it was philosophically better not
to introduce a step that was certain to produce
less than 99.99% accuracy. The cost was a
somewhat larger number of gaps of some-
what larger size.

At the final stage of the assembly process,
and also at several intermediate points, a
consensus sequence of every contig is pro-
duced. Our algorithm is driven by the princi-
ple of maximum parsimony, with quality-
value—weighted measures for evaluating each
base. The net effect is a Bayesian estimate of
the correct base to report at each position.
Consensus generation uses Celera data when-
ever it is present. In the event that no Celera
data cover a given region, the BAC data
sequence is used.

A key element of achieving a WGA of the
human genome was to parallelize the Overlap-
per and the central consensus sequence—con-
structing subroutines. In addition, memory was
a real issue—a straightforward application of
the software we had built for Drosophila would
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have required a computer with a 600-gigabyte
RAM. By making the Overlapper and Unitigger
incremental, we were able to achieve the same
computation with a maximum of instantaneous
usage of 28 gigabytes of RAM. Moreover, the
incremental nature of the first three stages al-
lowed us to continually update the state of this
part of the computation as data were delivered
and then perform a 7-day run to complete Scaf-
folding and Repeat Resolution whenever de-
sired. For our assembly operations, the total
compute infrastructure consists of 10 four-pro-
cessor SMPs with 4 gigabytes of memory per
cluster (Compaq’s ES40, Regatta) and a 16-
processor NUMA machine with 64 gigabytes
of memory (Compaq’s GS160, Wildfire). The
total compute for a run of the assembler was
roughly 20,000 CPU hours.

The assembly of Celera’s data, together
with the shredded bactig data, produced a set of
scaffolds totaling 2.848 Gbp in span and con-
sisting of 2.586 Gbp of sequence. The chaff, or
set of reads not incorporated in the assembly,
numbered 11.27 million (26%), which is con-
sistent with our experience for Drosophila.
More than 84% of the genome was covered by
scaffolds >100 kbp long, and these averaged
91% sequence and 9% gaps with a total of
2.297 Gbp of sequence. There were a total of
93,857 gaps among the 1637 scaffolds >100
kbp. The average scaffold size was 1.5 Mbp,
the average contig size was 24.06 kbp, and the
average gap size was 2.43 kbp, where the dis-

Table 3. Scaffold statistics for whole-genome and compartmentalized shotgun assemblies.

tribution of each was essentially exponential.
More than 50% of all gaps were less than 500
bp long, >62% of all gaps were less than 1 kbp
long, and no gap was >100 kbp long. Similar-
ly, more than 65% of the sequence is in contigs
>30 kbp, more than 31% is in contigs >100
kbp, and the largest contig was 1.22 Mbp long.
Table 3 gives detailed summary statistics for
the structure of this assembly with a direct
comparison to the compartmentalized shotgun
assembly.

2.4 Compartmentalized shotgun
assembly

In addition to the WGA approach, we pur-
sued a localized assembly approach that was
intended to subdivide the genome into seg-
ments, each of which could be shotgun as-
sembled individually. We expected that this
would help in resolution of large interchro-
mosomal duplications and improve the statis-
tics for calculating U-unitigs. The compart-
mentalized assembly process involved clus-
tering Celera reads and bactigs into large,
multiple megabase regions of the genome,
and then running the WGA assembler on the
Celera data and shredded, faux reads ob-
tained from the bactig data.

The first phase of the CSA strategy was to
separate Celera reads into those that matched
the BAC contigs for a particular PFP BAC
entry, and those that did not match any public
data. Such matches must be guaranteed to

Scaffold size

All >30 kbp >100 kbp >500 kbp >1000 kbp
Compartmentalized shotgun assembly
No. of bp in scaffolds 2,905,568,203 2,748,892,430 2,700,489,906 2,489,357,260 2,248,689,128
(including intrascaffold gaps)
No. of bp in contigs 2,653,979,733 2,524,251,302 2,491,538,372 2,320,648,201 2,106,521,902
No. of scaffolds 53,591 2,845 1,935 1,060 721
No. of contigs 170,033 112,207 107,199 93,138 82,009
No. of gaps 116,442 109,362 105,264 92,078 81,288
No. of gaps =1 kbp 72,091 69,175 67,289 59,915 53,354
Average scaffold size (bp) 54,217 966,219 1,395,602 2,348,450 3,118,848
Average contig size (bp) 15,609 22,496 23,242 24,916 25,686
Average intrascaffold gap size 2,161 2,054 1,985 1,832 1,749
(bp)

Largest contig (bp) 1,988,321 1,988,321 1,988,321 1,988,321 1,988,321
% of total contigs 100 95 94 87 79
Whole-genome assembly
No. of bp in scaffolds 2,847,890,390 2,574,792,618 2,525,334,447 2,328,535,466 2,140,943,032

(including intrascaffold gaps)
No. of bp in contigs 2,586,634,108 2,334,343,339 2,297,678,935 2,143,002,184 1,983,305,432
No. of scaffolds 118,968 2,507 1,637 818 554
No. of contigs 221,036 99,189 95,494 84,641 76,285
No. of gaps 102,068 96,682 93,857 83,823 75,731
No. of gaps =1 kbp 62,356 60,343 59,156 54,079 49,592
Average scaffold size (bp) 23,938 1,027,041 1,542,660 2,846,620 3,864,518
Average contig size (bp) 11,702 23,534 24,061 25,319 25,999
Average intrascaffold gap size 2,560 2,487 2,426 2,213 2,082
(bp)
Largest contig (bp) 1,224,073 1,224,073 1,224,073 1,224,073 1,224,073
% of total contigs 100 90 89 83 77
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properly place a Celera read, so all reads were
first masked against a library of common
repetitive elements, and only matches of at
least 40 bp to unmasked portions of the read
constituted a hit. Of Celera’s 27.27 million
reads, 20.76 million matched a bactig and
another 0.62 million reads, which did not
have any matches, were nonetheless identi-
fied as belonging in the region of the bactig’s
BAC because their mate matched the bactig.
Of the remaining reads, 2.92 million were
completely screened out and so could not be
matched, but the other 2.97 million reads had
unmasked sequence totaling 1.189 Gbp that
were not found in the GenBank data set.
Because the Celera data are 5.11X redundant,
we estimate that 240 Mbp of unique Celera
sequence is not in the GenBank data set.

In the next step of the CSA process, a
combining assembler took the relevant 5X
Celera reads and bactigs for a BAC entry, and
produced an assembly of the combined data
for that locale. These high-quality sequence
reconstructions were a transient result whose
utility was simply to provide more reliable
information for the purposes of their tiling
into sets of overlapping and adjacent scaffold
sequences in the next step. In outline, the
combining assembler first examines the set of
matching Celera reads to determine if there
are excessive pileups indicative of un-
screened repetitive elements. Wherever these
occur, reads in the repeat region whose mates
have not been mapped to consistent positions
are removed. Then all sets of mate pairs that
consistently imply the same relative position
of two bactigs are bundled into a link and
weighted according to the number of mates in
the bundle. A “greedy” strategy then attempts
to order the bactigs by selecting bundles of
mate-pairs in order of their weight. A selected
mate-pair bundle can tie together two forma-
tive scaffolds. It is incorporated to form a
single scaffold only if it is consistent with the
majority of links between contigs of the scaf-
fold. Once scaffolding is complete, gaps are
filled by the “Stones” strategy described
above for the WGA assembler.

The GenBank data for the Phase 1 and 2
BAC:s consisted of an average of 19.8 bactigs
per BAC of average size 8099 bp. Applica-
tion of the combining assembler resulted in
individual Celera BAC assemblies being put
together into an average of 1.83 scaffolds
(median of 1 scaffold) consisting of an aver-
age of 8.57 contigs of average size 18,973 bp.
In addition to defining order and orientation
of the sequence fragments, there were 57%
fewer gaps in the combined result. For Phase
0 data, the average GenBank entry consisted
of 91.52 reads of average length 784 bp.
Application of the combining assembler re-
sulted in an average of 54.8 scaffolds consist-
ing of an average of 58.1 contigs of average
size 873 bp. Basically, some small amount of
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assembly took place, but not enough Celera
data were matched to truly assemble the 0.5X
to 1X data set represented by the typical
Phase 0 BACs. The combining assembler
was also applied to the Phase 3 BACs for
SNP identification, confirmation of assem-
bly, and localization of the Celera reads. The
phase 0 data suggest that a combined whole-
genome shotgun data set and 1X light-shot-
gun of BACs will not yield good assembly of
BAC regions; at least 3X light-shotgun of
each BAC is needed.

The 5.89 million Celera fragments not
matching the GenBank data were assembled
with our whole-genome assembler. The as-
sembly resulted in a set of scaffolds totaling
442 Mbp in span and consisting of 326 Mbp
of sequence. More than 20% of the scaffolds
were >5 kbp long, and these averaged 63%
sequence and 27% gaps with a total of 302
Mbp of sequence. All scaffolds >5 kbp were
forwarded along with all scaffolds produced
by the combining assembler to the subse-
quent tiling phase.

At this stage, we typically had one or two
scaffolds for every BAC region constituting
at least 95% of the relevant sequence, and a
collection of disjoint Celera-unique scaffolds.
The next step in developing the genome com-
ponents was to determine the order and over-
lap tiling of these BAC and Celera-unique
scaffolds across the genome. For this, we
used Celera’s 50-kbp mate-pairs information,
and BAC-end pairs (/8) and sequence tagged
site (STS) markers (44) to provide long-
range guidance and chromosome separation.
Given the relatively manageable number of
scaffolds, we chose not to produce this tiling
in a fully automated manner, but to compute
an initial tiling with a good heuristic and then
use human curators to resolve discrepancies
or missed join opportunities. To this end, we
developed a graphical user interface that dis-
played the graph of tiling overlaps and the
evidence for each. A human curator could
then explore the implication of mapped STS
data, dot-plots of sequence overlap, and a
visual display of the mate-pair evidence sup-
porting a given choice. The result of this
process was a collection of “components,”
where each component was a tiled set of
BAC and Celera-unique scaffolds that had
been curator-approved. The process resulted
in 3845 components with an estimated span
of 2.922 Gbp.

In order to generate the final CSA, we
assembled each component with the WGA
algorithm. As was done in the WGA process,
the bactig data were shredded into a synthetic
2X shotgun data set in order to give the
assembler the freedom to independently as-
semble the data. By using faux reads rather
than bactigs, the assembly algorithm could
correct errors in the assembly of bactigs and
remove chimeric content in a PFP data entry.
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Chimeric or contaminating sequence (from
another part of the genome) would not be
incorporated into the reassembly of the com-
ponent because it did not belong there. In
effect, the previous steps in the CSA process
served only to bring together Celera frag-
ments and PFP data relevant to a large con-
tiguous segment of the genome, wherein we
applied the assembler used for WGA to pro-
duce an ab initio assembly of the region.

WGA assembly of the components result-
ed in a set of scaffolds totaling 2.906 Gbp in
span and consisting of 2.654 Gbp of se-
quence. The chaff, or set of reads not incor-
porated into the assembly, numbered 6.17
million, or 22%. More than 90.0% of the
genome was covered by scaffolds spanning
>100 kbp long, and these averaged 92.2%
sequence and 7.8% gaps with a total of 2.492
Gbp of sequence. There were a total of
105,264 gaps among the 107,199 contigs that
belong to the 1940 scaffolds spanning >100
kbp. The average scaffold size was 1.4 Mbp,
the average contig size was 23.24 kbp, and
the average gap size was 2.0 kbp where each
distribution of sizes was exponential. As
such, averages tend to be underrepresentative
of the majority of the data. Figure 5 shows a
histogram of the bases in scaffolds of various
size ranges. Consider also that more than
49% of all gaps were <500 bp long, more
than 62% of all gaps were <1 kbp, and all
gaps are <100 kbp long. Similarly, more than
73% of the sequence is in contigs > 30 kbp,
more than 49% is in contigs >100 kbp, and
the largest contig was 1.99 Mbp long. Table 3
provides summary statistics for the structure
of this assembly with a direct comparison to
the WGA assembly.

2.5 Comparison of the WGA and CSA
scaffolds

Having obtained two assemblies of the hu-
man genome via independent computational
processes (WGA and CSA), we compared
scaffolds from the two assemblies as another
means of investigating their completeness,
consistency, and contiguity. From each as-
sembly, a set of reference scaffolds contain-
ing at least 1000 fragments (Celera sequenc-
ing reads or bactig shreds) was obtained; this
amounted to 2218 WGA scaffolds and 1717
CSA scaffolds, for a total of 2.087 Gbp and
2.474 Gbp. The sequence of each reference
scaffold was compared to the sequence of all
scaffolds from the other assembly with which
it shared at least 20 fragments or at least 20%
of the fragments of the smaller scaffold. For
each such comparison, all matches of at least
200 bp with at most 2% mismatch were
tabulated.

From this tabulation, we estimated the
amount of unique sequence in each assembly
in two ways. The first was to determine the
number of bases of each assembly that were
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not covered by a matching segment in the
other assembly. Some 82.5 Mbp of the WGA
(3.95%) was not covered by the CSA, where-
as 204.5 Mbp (8.26%) of the CSA was not
covered by the WGA. This estimate did not
require any consistency of the assemblies or
any uniqueness of the matching segments.
Thus, another analysis was conducted in
which matches of less than 1 kbp between a
pair of scaffolds were excluded unless they
were confirmed by other matches having a
consistent order and orientation. This gives
some measure of consistent coverage: 1.982
Gbp (95.00%) of the WGA is covered by the
CSA, and 2.169 Gbp (87.69%) of the CSA is
covered by the WGA by this more stringent
measure.

The comparison of WGA to CSA also
permitted evaluation of scaffolds for structur-
al inconsistencies. We looked for instances in
which a large section of a scaffold from one
assembly matched only one scaffold from the
other assembly, but failed to match over the
full length of the overlap implied by the
matching segments. An initial set of candi-
dates was identified automatically, and then
each candidate was inspected by hand. From
this process, we identified 31 instances in
which the assemblies appear to disagree in a
nonlocal fashion. These cases are being fur-
ther evaluated to determine which assembly
is in error and why.

In addition, we evaluated local inconsis-
tencies of order or orientation. The following
results exclude cases in which one contig in
one assembly corresponds to more than one
overlapping contig in the other assembly (as
long as the order and orientation of the latter
agrees with the positions they match in the
former). Most of these small rearrangements
involved segments on the order of hundreds
of base pairs and rarely >1 kbp. We found a
total of 295 kbp (0.012%) in the CSA assem-
blies that were locally inconsistent with the
WGA assemblies, whereas 2.108 Mbp
(0.11%) in the WGA assembly were incon-
sistent with the CSA assembly.
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The CSA assembly was a few percentage
points better in terms of coverage and slightly
more consistent than the WGA, because it
was in effect performing a few thousand shot-
gun assemblies of megabase-sized problems,
whereas the WGA is performing a shotgun
assembly of a gigabase-sized problem. When
one considers the increase of two-and-a-half
orders of magnitude in problem size, the in-
formation loss between the two is remarkably
small. Because CSA was logistically easier to
deliver and the better of the two results avail-
able at the time when downstream analyses
needed to be begun, all subsequent analysis
was performed on this assembly.

2.6 Mapping scaffolds to the genome

The final step in assembling the genome was to
order and orient the scaffolds on the chromo-
somes. We first grouped scaffolds together on
the basis of their order in the components from
CSA. These grouped scaffolds were reordered
by examining residual mate-pairing data be-
tween the scaffolds. We next mapped the scaf-
fold groups onto the chromosome using physi-
cal mapping data. This step depends on having
reliable high-resolution map information such
that each scaffold will overlap multiple mark-
ers. There are two genome-wide types of map
information available: high-density STS maps
and fingerprint maps of BAC clones developed
at Washington University (45). Among the ge-
nome-wide STS maps, GeneMap99 (GM99)
has the most markers and therefore was most
useful for mapping scaffolds. The two different
mapping approaches are complementary to one
another. The fingerprint maps should have bet-
ter local order because they were built by com-
parison of overlapping BAC clones. On the
other hand, GM99 should have a more reliable
long-range order, because the framework mark-
ers were derived from well-validated genetic
maps. Both types of maps were used as a
reference for human curation of the compo-
nents that were the input to the regional assem-
bly, but they did not determine the order of
sequences produced by the assembler.

r

<30 kb 30-50 kb 50-100 kb

100-500 kb 0.5-1 Mb

1-5 Mb 5-10 Mb > 10Mb

Scaffold Size
Fig. 5. Distribution of scaffold sizes of the CSA. For each range of scaffold sizes, the percent of total

sequence is indicated.
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In order to determine the effectiveness of
the fingerprint maps and GM99 for mapping
scaffolds, we first examined the reliability of
these maps by comparison with large scaf-
folds. Only 1% of the STS markers on the 10
largest scaffolds (those >9 Mbp) were
mapped on a different chromosome on
GM99. Two percent of the STS markers dis-
agreed in position by more than five frame-
work bins. However, for the fingerprint
maps, a 2% chromosome discrepancy was
observed, and on average 23.8% of BAC
locations in the scaffold sequence disagreed
with fingerprint map placement by more than
five BACs. When further examining the
source of discrepancy, it was found that most
of the discrepancy came from 4 of the 10
scaffolds, indicating this there is variation in
the quality of either the map or the scaffolds.
All four scaffolds were assembled, as well as
the other six, as judged by clone coverage
analysis, and showed the same low discrep-
ancy rate to GM99, and thus we concluded
that the fingerprint map global order in these
cases was not reliable. Smaller scaffolds had
a higher discordance rate with GM99 (4.21%
of STSs were discordant by more than five
framework bins), but a lower discordance rate
with the fingerprint maps (11% of BACs
disagreed with fingerprint maps by more than
five BACs). This observation agrees with the
clone coverage analysis (46) that Celera scaf-
fold construction was better supported by
long-range mate pairs in larger scaffolds than
in small scaffolds.

We created two orderings of Celera scaf-
folds on the basis of the markers (BAC or
STS) on these maps. Where the order of
scaffolds agreed between GM99 and the
WashU BAC map, we had a high degree of
confidence that that order was correct; these
scaffolds were termed “anchor scaffolds.”
Only scaffolds with a low overall discrepancy
rate with both maps were considered anchor
scaffolds. Scaffolds in GM99 bins were al-
lowed to permute in their order to match
WashU ordering, provided they did not vio-
late their framework orders. Orientation of
individual scaffolds was determined by the
presence of multiple mapped markers with
consistent order. Scaffolds with only one
marker have insufficient information to as-
sign orientation. We found 70.1% of the ge-
nome in anchored scaffolds, more than 99%
of which are also oriented (Table 4). Because
GM99 is of lower resolution than the WashU
map, a number of scaffolds without STS
matches could be ordered relative to the an-
chored scaffolds because they included se-
quence from the same or adjacent BACs on
the WashU map. On the other hand, because
of occasional WashU global ordering dis-
crepancies, a number of scaffolds determined
to be “unmappable” on the WashU map could
be ordered relative to the anchored scaffolds
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with GM99. These scaffolds were termed
“ordered scaffolds.” We found that 13.9% of
the assembly could be ordered by these ad-
ditional methods, and thus 84.0% of the ge-
nome was ordered unambiguously.

Next, all scaffolds that could be placed,
but not ordered, between anchors were as-
signed to the interval between the anchored
scaffolds and were deemed to be “bound-
ed” between them. For example, small scaf-
folds having STS hits from the same Gene-
Map bin or hitting the same BAC cannot be
ordered relative to each other, but can be
assigned a placement boundary relative to
other anchored or ordered scaffolds. The
remaining scaffolds either had no localiza-
tion information, conflicting information,
or could only be assigned to a generic
chromosome location. Using the above ap-
proaches, ~98% of the genome was an-
chored, ordered, or bounded.

Finally, we assigned a location for each
scaffold placed on the chromosome by
spreading out the scaffolds per chromosome.
We assumed that the remaining unmapped
scaffolds, constituting 2% of the genome,
were distributed evenly across the genome.
By dividing the sum of unmapped scaffold
lengths with the sum of the number of
mapped scaffolds, we arrived at an estimate
of interscaffold gap of 1483 bp. This gap was
used to separate all the scaffolds on each
chromosome and to assign an offset in the
chromosome.

During the scaffold-mapping effort, we en-
countered many problems that resulted in addi-
tional quality assessment and validation analy-
sis. At least 978 (3% of 33,173) BACs were
believed to have sequence data from more than
one location in the genome (47). This is con-
sistent with the bactig chimerism analysis re-
ported above in the Assembly Strategies sec-
tion. These BACs could not be assigned to
unique positions within the CSA assembly and
thus could not be used for ordering scaffolds.
Likewise, it was not always possible to assign
STSs to unique locations in the assembly be-
cause of genome duplications, repetitive ele-
ments, and pseudogenes.

Because of the time required for an ex-
haustive search for a perfect overlap, CSA
generated 21,607 intrascaffold gaps where
the mate-pair data suggested that the contigs
should overlap, but no overlap was found.
These gaps were defined as a fixed 50 bp in
length and make up 18.6% of the total
116,442 gaps in the CSA assembly.

We chose not to use the order of exons
implied in ¢cDNA or EST data as a way of
ordering scaffolds. The rationale for not us-
ing this data was that doing so would have
biased certain regions of the assembly by
rearranging scaffolds to fit the transcript data
and made validation of both the assembly and
gene definition processes more difficult.
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2.7 Assembly and validation analysis

We analyzed the assembly of the genome
from the perspectives of completeness
(amount of coverage of the genome) and
correctness (the structural accuracy of the
order and orientation and the consensus se-
quence of the assembly).

Completeness. Completeness is defined as
the percentage of the euchromatic sequence
represented in the assembly. This cannot be
known with absolute certainty until the eu-
chromatin sequence has been completed.
However, it is possible to estimate complete-
ness on the basis of (i) the estimated sizes of
intrascaffold gaps; (ii) coverage of the two
published chromosomes, 21 and 22 (48, 49);
and (iii) analysis of the percentage of an
independent set of random sequences (STS
markers) contained in the assembly. The
whole-genome libraries contain heterochro-
matic sequence and, although no attempt has
been made to assemble it, there may be in-
stances of unique sequence embedded in re-
gions of heterochromatin as were observed in
Drosophila (50, 51).

The sequences of human chromosomes 21
and 22 have been completed to high quality
and published (48, 49). Although this se-
quence served as input to the assembler, the
finished sequence was shredded into a shot-
gun data set so that the assembler had the
opportunity to assemble it differently from
the original sequence in the case of structural
polymorphisms or assembly errors in the
BAC data. In particular, the assembler must
be able to resolve repetitive elements at the
scale of components (generally multimega-
base in size), and so this comparison reveals
the level to which the assembler resolves
repeats. In certain areas, the assembly struc-
ture differs from the published versions of
chromosomes 21 and 22 (see below). The
consequence of the flexibility to assemble
“finished” sequence differently on the basis
of Celera data resulted in an assembly with
more segments than the chromosome 21 and
22 sequences. We examined the reasons why
there are more gaps in the Celera sequence
than in chromosomes 21 and 22 and expect
that they may be typical of gaps in other
regions of the genome. In the Celera assem-
bly, there are 25 scaffolds, each containing at
least 10 kb of sequence, that collectively span
94.3% of chromosome 21. Sixty-two scaf-
folds span 95.7% of chromosome 22. The
total length of the gaps remaining in the
Celera assembly for these two chromosomes
is 3.4 Mbp. These gap sequences were ana-
lyzed by RepeatMasker and by searching
against the entire genome assembly (52).
About 50% of the gap sequence consisted of
common repetitive elements identified by Re-
peatMasker; more than half of the remainder
was lower copy number repeat elements.

A more global way of assessing complete-
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ness is to measure the content of an independent
set of sequence data in the assembly. We com-
pared 48,938 STS markers from Genemap99
(51) to the scaffolds. Because these markers
were not used in the assembly processes, they
provided a truly independent measure of com-
pleteness. ePCR (53) and BLAST (54) were
used to locate STSs on the assembled genome.
We found 44,524 (91%) of the STSs in the
mapped genome. An additional 2648 markers
(5.4%) were found by searching the unas-
sembled data or “chaff.” We identified 1283
STS markers (2.6%) not found in either Celera
sequence or BAC data as of September 2000,
raising the possibility that these markers may
not be of human origin. If that were the case,
the Celera assembled sequence would represent
93.4% of the human genome and the unas-
sembled data 5.5%, for a total of 98.9% cover-
age. Similarly, we compared CSA against
36,678 TNG radiation hybrid markers (55a)
using the same method. We found that 32,371
markers (88%) were located in the mapped
CSA scaffolds, with 2055 markers (5.6%)
found in the remainder. This gave a 94% cov-
erage of the genome through another genome-
wide survey.

Correctness. Correctness is defined as the
structural and sequence accuracy of the as-
sembly. Because the source sequences for the
Celera data and the GenBank data are from
different individuals, we could not directly
compare the consensus sequence of the as-

Table 4. Summary of scaffold mapping. Scaffolds
were mapped to the genome with different levels
of confidence (anchored scaffolds have the highest
confidence; unmapped scaffolds have the lowest).
Anchored scaffolds were consistently ordered by
the WashU BAC map and GM99. Ordered scaf-
folds were consistently ordered by at least one of
the following: the WashU BAC map, GM99, or
component tiling path. Bounded scaffolds had or-
der conflicts between at least two of the external
maps, but their placements were adjacent to a
neighboring anchored or ordered scaffold. Un-
mapped scaffolds had, at most, a chromosome
assignment. The scaffold subcategories are given
below each category.

Mapped %
scaffold Number Length (bp) Total
category length
Anchored 1,526 1,860,676,676 70
Oriented 1,246 1,852,088,645 70
Unoriented 280 8,588,031 0.3
Ordered 2,001 369,235857 14
Oriented 839 329,633,166 12
Unoriented 1,162 39,602,691 2
Bounded 38,241 368,753,463 14
Oriented 7,453 274,536,424 10
Unoriented 30,788 94,217,039 4
Unmapped 11,823 55,313,737 2
Known 281 2,505,844 0.1
chromosome
Unknown 11,542 52,807,893 2
chromosome
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sembly against other finished sequence for
determining sequencing accuracy at the nu-
cleotide level, although this has been done for
identifying polymorphisms as described in
Section 6. The accuracy of the consensus
sequence is at least 99.96% on the basis of a
statistical estimate derived from the quality
values of the underlying reads.

The structural consistency of the assembly
can be measured by mate-pair analysis. In a
correct assembly, every mated pair of se-
quencing reads should be located on the con-
sensus sequence with the correct separation
and orientation between the pairs. A pair is
termed “valid” when the reads are in the
correct orientation and the distance between
them is within the mean = 3 standard devi-
ations of the distribution of insert sizes of the
library from which the pair was sampled. A
pair is termed “misoriented” when the reads
are not correctly oriented, and is termed “mis-
separated” when the distance between the
reads is not in the correct range but the reads
are correctly oriented. The mean * the stan-
dard deviation of each library used by the
assembler was determined as described
above. To validate these, we examined all
reads mapped to the finished sequence of
chromosome 21 (48) and determined how
many incorrect mate pairs there were as a
result of laboratory tracking errors and chi-
merism (two different segments of the ge-
nome cloned into the same plasmid), and how
tight the distribution of insert sizes was for

Table 5. Mate-pair validation. Celera fragment sequences were mapped to
the published sequence of chromosome 21. Each mate pair uniquely
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those that were correct (Table 5). The stan-
dard deviations for all Celera libraries were
quite small, less than 15% of the insert
length, with the exception of a few 50-kbp
libraries. The 2- and 10-kbp libraries con-
tained less than 2% invalid mate pairs, where-
as the 50-kbp libraries were somewhat higher
(~10%). Thus, although the mate-pair infor-
mation was not perfect, its accuracy was such
that measuring valid, misoriented, and mis-
separated pairs with respect to a given assem-
bly was deemed to be a reliable instrument
for validation purposes, especially when sev-
eral mate pairs confirm or deny an ordering.

The clone coverage of the genome was
39X, meaning that any given base pair was,
on average, contained in 39 clones or, equiv-
alently, spanned by 39 mate-paired reads.
Areas of low clone coverage or areas with a
high proportion of invalid mate pairs would
indicate potential assembly problems. We
computed the coverage of each base in the
assembly by valid mate pairs (Table 6). In
summary, for scaffolds >30 kbp in length,
less than 1% of the Celera assembly was in
regions of less than 3X clone coverage. Thus,
more than 99% of the assembly, including
order and orientation, is strongly supported
by this measure alone.

We examined the locations and number of
all misoriented and misseparated mates. In
addition to doing this analysis on the CSA
assembly (as of 1 October 2000), we also
performed a study of the PFP assembly as of

5 September 2000 (30, 55b). In this latter
case, Celera mate pairs had to be mapped to
the PFP assembly. To avoid mapping errors
due to high-fidelity repeats, the only pairs
mapped were those for which both reads
matched at only one location with less than
6% differences. A threshold was set such that
sets of five or more simultaneously invalid
mate pairs indicated a potential breakpoint,
where the construction of the two assemblies
differed. The graphic comparison of the CSA
chromosome 21 assembly with the published
sequence (Fig. 6A) serves as a validation of
this methodology. Blue tick marks in the
panels indicate breakpoints. There were a
similar (small) number of breakpoints on
both chromosome sequences. The exception
was 12 sets of scaffolds in the Celera assem-
bly (a total of 3% of the chromosome length
in 212 single-contig scaffolds) that were
mapped to the wrong positions because they
were too small to be mapped reliably. Figures
6 and 7 and Table 6 illustrate the mate-pair
differences and breakpoints between the two
assemblies. There was a higher percentage of
misoriented and misseparated mate pairs in
the large-insert libraries (50 kbp and BAC
ends) than in the small-insert libraries in both
assemblies (Table 6). The large-insert librar-
ies are more likely to identify discrepancies
simply because they span a larger segment of
the genome. The graphic comparison be-
tween the two assemblies for chromosome §
(Fig. 6, B and C) shows that there are many

of mate pairs tested). If the two mates had incorrect relative orienta-
tion or placement, they were considered invalid (number of invalid mate

mapped was evaluated for correct orientation and placement (number pairs).
Chromosome 21 Genome
Library Library Mean No. of No. of
type no. insert SD Sb/ mate invalid % Mean SD s/
size (bp) n'(\;a\)n pairs mate invalid silzr1es?{>t ) (bp) n(f/a)n
(bp) ° tested pairs P ?
2 kbp 1 2,081 106 5.1 3,642 38 1.0 2,082 90 4.3
2 1,913 152 7.9 28,029 413 1.5 1,923 118 6.1
3 2,166 175 8.1 4,405 57 13 2,162 158 73
10 kbp 4 11,385 851 7.5 4,319 80 19 11,370 696 6.1
5 14,523 1,875 12.9 7,355 156 2.1 14,142 1,402 9.9
6 9,635 1,035 10.7 5,573 109 2.0 9,606 934 9.7
7 10,223 928 9.1 34,079 399 1.2 10,190 777 7.6
50 kbp 8 64,888 2,747 4.2 16 1 6.3 65,500 5,504 8.4
9 53,410 5,834 10.9 914 170 18.6 53,311 5,546 10.4
10 52,034 7,312 14.1 5,871 569 9.7 51,498 6,588 12.8
1 52,282 7,454 143 2,629 213 8.1 52,282 7,454 143
12 46,616 7,378 15.8 2,153 215 10.0 45,418 9,068 20.0
13 55,788 10,099 18.1 2,244 249 111 53,062 10,893 20.5
14 39,894 5019 12,6 199 7 35 36,838 9,988 27.1
BES 15 48,931 9,813 20.1 144 10 6.9 47,845 4,774 10.0
16 48,130 4,232 838 195 14 7.2 47,924 4,581 9.6
17 106,027 27,778 26.2 330 16 4.8 152,000 26,600 17.5
18 160,575 54,973 34.2 155 8 5.2 161,750 27,000 16.7
19 164,155 19,453 11.9 642 44 6.9 176,500 19,500 11.05
Sum 102,894 2,768 2.7
(mean = 2.7)
16 FEBRUARY 2001 VOL 291 SCIENCE www.sciencemag.org



more breakpoints for the PFP assembly than
for the Celera assembly. Figure 7 shows the
breakpoint map (blue tick marks) for both
assemblies of each chromosome in a side-by-
side fashion. The order and orientation of
Celera’s assembly shows substantially fewer
breakpoints except on the two finished chro-
mosomes. Figure 7 also depicts large gaps
(>10 kbp) in both assemblies as red tick
marks. In the CSA assembly, the size of all
gaps have been estimated on the basis of the
mate-pair data. Breakpoints can be caused by
structural polymorphisms, because the two
assemblies were derived from different hu-
man genomes. They also reflect the unfin-
ished nature of both genome assemblies.

3 Gene Prediction and Annotation

Summary. To enumerate the gene inventory,
we developed an integrated, evidence-based
approach named Otto. The evidence used to
increase the likelihood of identifying genes
includes regions conserved between the
mouse and human genomes, similarity to
ESTs or other mRNA-derived data, or simi-
larity to other proteins. A comparison of Otto
(combined Otto-RefSeq and Otto homology)
with Genscan, a standard gene-prediction al-
gorithm, showed greater sensitivity (0.78 ver-
sus 0.50) and specificity (0.93 versus 0.63) of
Otto in the ability to define gene structure.
Otto-predicted genes were complemented
with a set of genes from three gene-prediction
programs that exhibited weaker, but still sig-
nificant, evidence that they may be ex-
pressed. Conservative criteria, requiring at
least two lines of evidence, were used to
define a set of 26,383 genes with good con-
fidence that were used for more detailed anal-
ysis presented in the subsequent sections.
Extensive manual curation to establish pre-
cise characterization of gene structure will be
necessary to improve the results from this
initial computational approach.

3.1 Automated gene annotation

A gene is a locus of cotranscribed exons. A
single gene may give rise to multiple tran-
scripts, and thus multiple distinct proteins
with multiple functions, by means of alterna-
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tive splicing and alternative transcription ini-
tiation and termination sites. Our cells are
able to discern within the billions of base
pairs of the genomic DNA the signals for
initiating transcription and for splicing to-
gether exons separated by a few or hundreds
of thousands of base pairs. The first step in
characterizing the genome is to define the
structure of each gene and each transcription
unit.

The number of protein-coding genes in
mammals has been controversial from the
outset. Initial estimates based on reassocia-
tion data placed it between 30,000 to 40,000,
whereas later estimates from the brain were
>100,000 (56). More recent data from both
the corporate and public sectors, based on
extrapolations from EST, CpG island, and
transcript density—based extrapolations, have
not reduced this variance. The highest recent
number of 142,634 genes emanates from a
report from Incyte Pharmaceuticals, and is
based on a combination of EST data and the
association of ESTs with CpG islands (57).
In stark contrast are three quite different, and
much lower estimates: one of ~35,000 genes
derived with genome-wide EST data and
sampling procedures in conjunction with
chromosome 22 data (58); another of 28,000
to 34,000 genes derived with a comparative
methodology involving sequence conserva-
tion between humans and the puffer fish 7Te-
traodon nigroviridis (59); and a figure of
35,000 genes, which was derived simply by
extrapolating from the density of 770 known
and predicted genes in the 67 Mbp of chro-
mosomes 21 and 22, to the approximately
3-Gbp euchromatic genome.

The problem of computational identifica-
tion of transcriptional units in genomic DNA
sequence can be divided into two phases. The
first is to partition the sequence into segments
that are likely to correspond to individual
genes. This is not trivial and is a weakness of
most de novo gene-finding algorithms. It is
also critical to determining the number of
genes in the human gene inventory. The sec-
ond challenge is to construct a gene model
that reflects the probable structure of the
transcript(s) encoded in the region. This can

Table 6. Genome-wide mate pair analysis of compartmentalized shotgun (CSA) and PFP assemblies.*

CSA PFP

Genome % % % %

library % o o % y y
valid mis- mis- valid mis mis-

oriented separatedf oriented separatedf

2 kbp 98.5 0.6 1.0 95.7 2.0 2.3
10 kbp 96.7 1.0 23 81.9 9.6 8.6
50 kbp 93.9 4.5 1.5 64.2 22.3 13.5
BES 94.1 2.1 3.8 62.0 19.3 18.8
Mean 97.4 1.0 1.6 87.3 6.8 59

*Data for individual chromosomes can be found in Web fig. 3 on Science Online at www.sciencemag.org/cgi/content/

full/291/5507/1304/DC1.
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FMates are misseparated if their distance is >3 SD from the mean library size.
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be done with reasonable accuracy when a
full-length ¢cDNA has been sequenced or a
highly homologous protein sequence is
known. De novo gene prediction, although
less accurate, is the only way to find genes
that are not represented by homologous pro-
teins or ESTs. The following section de-
scribes the methods we have developed to
address these problems for the prediction of
protein-coding genes.

We have developed a rule-based expert sys-
tem, called Otto, to identify and characterize
genes in the human genome (60). Otto attempts
to simulate in software the process that a human
annotator uses to identify a gene and refine its
structure. In the process of annotating a region
of the genome, a human curator examines the
evidence provided by the computational pipe-
line (described below) and examines how var-
ious types of evidence relate to one another. A
curator puts different levels of confidence in
different types of evidence and looks for
certain patterns of evidence to support gene
annotation. For example, a curator may ex-
amine homology to a number of ESTs and
evaluate whether or not they can be connect-
ed into a longer, virtual mRNA. The curator
would also evaluate the strength of the simi-
larity and the contiguity of the match, in
essence asking whether any ESTs cross
splice-junctions and whether the edges of
putative exons have consensus splice sites.
This kind of manual annotation process was
used to annotate the Drosophila genome.

The Otto system can promote observed
evidence to a gene annotation in one of two
ways. First, if the evidence includes a high-
quality match to the sequence of a known
gene [here defined as a human gene repre-
sented in a curated subset of the RefSeq
database (67)], then Otto can promote this to
a gene annotation. In the second method, Otto
evaluates a broad spectrum of evidence and
determines if this evidence is adequate to
support promotion to a gene annotation.
These processes are described below.

Initially, gene boundaries are predicted on
the basis of examination of sets of overlap-
ping protein and EST matches generated by a
computational pipeline (62). This pipeline
searches the scaffold sequences against pro-
tein, EST, and genome-sequence databases to
define regions of sequence similarity and
runs three de novo gene-prediction programs.

To identify likely gene boundaries, re-
gions of the genome were partitioned by Otto
on the basis of sequence matches identified
by BLAST. Each of the database sequences
matched in the region under analysis was
compared by an algorithm that takes into
account both coordinates of the matching se-
quence, as well as the sequence type (e.g.,
protein, EST, and so forth). The results were
used to group the matches into bins of related
sequences that may define a gene and identify
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gene boundaries. During this process, multiple
hits to the same region were collapsed to a
coherent set of data by tracking the coverage of
a region. For example, if a group of bases was
represented by multiple overlapping ESTs, the
union of these regions matched by the set of
ESTs on the scaffold was marked as being
supported by EST evidence. This resulted in a
series of “gene bins,” each of which was be-
lieved to contain a single gene. One weakness of
this initial implementation of the algorithm was
in predicting gene boundaries in regions of tan-
demly duplicated genes. Gene clusters frequent-
ly resulted in homologous neighboring genes

THE HUMAN GENOME

being joined together, resulting in an annotation
that artificially concatenated these gene models.

Next, known genes (those with exact match-
es of a full-length cDNA sequence to the ge-
nome) were identified, and the region corre-
sponding to the ¢cDNA was annotated as a
predicted transcript. A subset of the curat-
ed human gene set RefSeq from the Nation-
al Center for Biotechnology Information
(NCBI) was included as a data set searched in
the computational pipeline. If a RefSeq tran-
script matched the genome assembly for at least
50% of its length at >92% identity, then the
SIM4 (63) alignment of the RefSeq transcript to

the region of the genome under analysis was
promoted to the status of an Otto annotation.
Because the genome sequence has gaps and
sequence errors such as frameshifts, it was not
always possible to predict a transcript that
agrees precisely with the experimentally deter-
mined cDNA sequence. A total of 6538 genes
in our inventory were identified and transcripts
predicted in this way.

Regions that have a substantial amount of
sequence similarity, but do not match known
genes, were analyzed by that part of the Otto
system that uses the sequence similarity in-
formation to predict a transcript. Here, Otto

0 5.0 Mbp 10.0 Mbp 15.0 Mbp 20.0 Mbp 25.0 Mbp 30.0 Mbp 0

50.0 Mbp

50.0 Mbp

0 5.0 Mbp 10.0 Mbp 15.0 Mbp 20.0 Mbp 25.0 Mbp 30.0 Mbp 0
Fig. 6. Comparison of the CSA and the PFP assembly. C
(A) All of chromosome 21, (B) all of chromosome 8,  gombp  90Mbp  9.1Mbp  92Mbp 93Mbp  94Mbp  95Mbp  9.6Mbp  9.7Mbp

and (C) a 1-Mb region of chromosome 8 representing
a single Celera scaffold. To generate the figure, Celera
fragment sequences were mapped onto each assem-
bly. The PFP assembly is indicated in the upper third
of each panel; the Celera assembly is indicated in the
lower third. In the center of the panel, green lines
show Celera sequences that are in the same order and
orientation in both assemblies and form the longest
consistently ordered run of sequences. Yellow lines
indicate sequence blocks that are in the same orien-
tation, but out of order. Red lines indicate sequence
blocks that are not in the same orientation. For
clarity, in the latter two cases, lines are only drawn
between segments of matching sequence that are at
least 50 kbp long. The top and bottom thirds of each
panel show the extent of Celera mate-pair violations
(red, misoriented; yellow, incorrect distance between
the mates) for each assembly grouped by library size.
(Mate pairs that are within the correct distance, as
expected from the mean library insert size, are omit-
ted from the figure for clarity.) Predicted breakpoints,
corresponding to stacks of violated mate pairs of the
same type, are shown as blue ticks on each assembly
axis. Runs of more than 10,000 Ns are shown as cyan
bars. Plots of all 24 chromosomes can be seen in Web
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fig. 3 on Science Online at www.sciencemag.org/cgi/ 51Mbp  52Mbp 53Mbp S54Mbp 55Mbp  56Mbp  57Mbp  5.8Mbp
content/full/291/5507/1304/DC1.
1318 16 FEBRUARY 2001 VOL 291 SCIENCE www.sciencemag.org




evaluates evidence generated by the compu-
tational pipeline, corresponding to conserva-
tion between mouse and human genomic
DNA, similarity to human transcripts (ESTs
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Fig. 7. Schematic view of the distribution of breakpoints and large gaps
on all chromosomes. For each chromosome, the upper pair of lines
represent the PFP assembly, and the lower pair of lines represent Celera’s
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and cDNAs), similarity to rodent transcripts
(ESTs and cDNAs), and similarity of the
translation of human genomic DNA to known
proteins to predict potential genes in the hu-
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man genome. The sequence from the region
of genomic DNA contained in a gene bin was
extracted, and the subsequences supported by
any homology evidence were marked (plus 100
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chromosome is indicated in black, and the chromosome numbers in red.
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bases flanking these regions). The other bases
in the region, those not covered by any homol-
ogy evidence, were replaced by N’s. This se-
quence segment, with high confidence regions
represented by the consensus genomic se-
quence and the remainder represented by N’s,
was then evaluated by Genscan to see if a
consistent gene model could be generated. This
procedure simplified the gene-prediction task
by first establishing the boundary for the gene
(not a strength of most gene-finding algo-
rithms), and by eliminating regions with no
supporting evidence. If Genscan returned a
plausible gene model, it was further evaluated
before being promoted to an “Otto” annotation.
The final Genscan predictions were often quite
different from the prediction that Genscan re-
turned on the same region of native genomic
sequence. A weakness of using Genscan to
refine the gene model is the loss of valid, small
exons from the final annotation.

The next step in defining gene structures
based on sequence similarity was to compare
each predicted transcript with the homology-
based evidence that was used in previous steps
to evaluate the depth of evidence for each exon
in the prediction. Internal exons were consid-
ered to be supported if they were covered by
homology evidence to within =10 bases of
their edges. For first and last exons, the internal
edge was required to be within 10 bases, but the
external edge was allowed greater latitude to
allow for 5’ and 3’ untranslated regions
(UTRs). To be retained, a prediction for a
multi-exon gene must have evidence such that
the total number of “hits,” as defined above,
divided by the number of exons in the predic-
tion must be >0.66 or must correspond to a
RefSeq sequence. A single-exon gene must be
covered by at least three supporting hits (=10
bases on each side), and these must cover the
complete predicted open reading frame. For
a single-exon gene, we also required that
the Genscan prediction include both a start
and a stop codon. Gene models that did not
meet these criteria were disregarded, and

Table 7. Sensitivity and specificity of Otto and
Genscan. Sensitivity and specificity were calculat-
ed by first aligning the prediction to the published
RefSeq transcript, tallying the number (N) of
uniquely aligned RefSeq bases. Sensitivity is the
ratio of N to the length of the published RefSeq
transcript. Specificity is the ratio of N to the
length of the prediction. All differences are signif-
icant (Tukey HSD; P < 0.001).

Method Sensitivity ~ Specificity
Otto (RefSeq only)* 0.939 0.973
Otto (homology)t 0.604 0.884
Genscan 0.501 0.633

*Refers to those annotations produced by Otto using only
the Sim4-polished RefSeq alignment rather than an evi-
dence-based Genscan prediction. tRefers to those
annotations produced by supplying all available evidence
to Genscan.
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those that passed were promoted to Otto
predictions. Homology-based Otto predic-
tions do not contain 3’ and 5’ untranslated
sequence. Although three de novo gene-finding
programs [GRAIL, Genscan, and FgenesH
(63)] were run as part of the computational
analysis, the results of these programs were not
directly used in making the Otto predictions.
Otto predicted 11,226 additional genes by
means of sequence similarity.

3.2 Otto validation

To validate the Otto homology-based process
and the method that Otto uses to define the
structures of known genes, we compared tran-
scripts predicted by Otto with their correspond-
ing (and presumably correct) transcript from a
set of 4512 RefSeq transcripts for which there
was a unique SIM4 alignment (Table 7). In
order to evaluate the relative performance of
Otto and Genscan, we made three comparisons.
The first involved a determination of the accu-
racy of gene models predicted by Otto with
only homology data other than the correspond-
ing RefSeq sequence (Otto homology in Table
7). We measured the sensitivity (correctly pre-
dicted bases divided by the total length of the
c¢DNA) and specificity (correctly predicted
bases divided by the sum of the correctly and
incorrectly predicted bases). Second, we exam-
ined the sensitivity and specificity of the Otto
predictions that were made solely with the Ref-
Seq sequence, which is the process that Otto
uses to annotate known genes (Otto-RefSeq).
And third, we determined the accuracy of the
Genscan predictions corresponding to these
RefSeq sequences. As expected, the alignment
method (Otto-RefSeq) was the most accurate,
and Otto-homology performed better than Gen-
scan by both criteria. Thus, 6.1% of true RefSeq
nucleotides were not represented in the Otto-
refseq annotations and 2.7% of the nucleotides
in the Otto-RefSeq transcripts were not con-
tained in the original RefSeq transcripts. The
discrepancies could come from legitimate
differences between the Celera assembly
and the RefSeq transcript due to polymor-
phisms, incomplete or incorrect data in the
Celera assembly, errors introduced by Sim4
during the alignment process, or the pres-
ence of alternatively spliced forms in the
data set used for the comparisons.

Because Otto uses an evidence-based ap-
proach to reconstruct genes, the absence of
experimental evidence for intervening exons
may inadvertantly result in a set of exons that
cannot be spliced together to give rise to a
transcript. In such cases, Otto may “split genes”
when in fact all the evidence should be com-
bined into a single transcript. We also examined
the tendency of these methods to incorrectly
split gene predictions. These trends are shown
in Fig. 8. Both RefSeq and homology-based
predictions by Otto split known genes into few-
er segments than Genscan alone.
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3.3 Gene number

Recognizing that the Otto system is quite
conservative, we used a different gene-pre-
diction strategy in regions where the ho-
mology evidence was less strong. Here the
results of de novo gene predictions were
used. For these genes, we insisted that a
predicted transcript have at least two of the
following types of evidence to be included
in the gene set for further analysis: protein,
human EST, rodent EST, or mouse genome
fragment matches. This final class of pre-
dicted genes is a subset of the predictions
made by the three gene-finding programs
that were used in the computational pipe-
line. For these, there was not sufficient
sequence similarity information for Otto to
attempt to predict a gene structure. The
three de novo gene-finding programs re-
sulted in about 155,695 predictions, of
which ~76,410 were nonredundant (non-
overlapping with one another). Of these,
57,935 did not overlap known genes or
predictions made by Otto. Only 21,350 of
the gene predictions that did not overlap
Otto predictions were partially supported
by at least one type of sequence similarity
evidence, and 8619 were partially support-
ed by two types of evidence (Table 8).

The sum of this number (21,350) and the
number of Otto annotations (17,764), 39,114,
is near the upper limit for the human gene
complement. As seen in Table 8, if the re-
quirement for other supporting evidence is
made more stringent, this number drops rap-
idly so that demanding two types of evidence
reduces the total gene number to 26,383 and
demanding three types reduces it to ~23,000.
Requiring that a prediction be supported by
all four categories of evidence is too stringent
because it would eliminate genes that encode
novel proteins (members of currently unde-
scribed protein families). No correction for
pseudogenes has been made at this point in
the analysis.

In a further attempt to identify genes that
were not found by the autoannotation process
or any of the de novo gene finders, we ex-
amined regions outside of gene predictions
that were similar to the EST sequence, and
where the EST matched the genomic se-
quence across a splice junction. After correct-
ing for potential 3" UTRs of predicted genes,
about 2500 such regions remained. Addition
of a requirement for at least one of the fol-
lowing evidence types—homology to mouse
genomic sequence fragments, rodent ESTs,
or cDNAs—or similarity to a known protein
reduced this number to 1010. Adding this to
the numbers from the previous paragraph
would give us estimates of about 40,000,
27,000, and 24,000 potential genes in the
human genome, depending on the stringency
of evidence considered. Table 8 illustrates the
number of genes and presents the degree of
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confidence based on the supporting evidence.
Transcripts encoded by a set of 26,383 genes
were assembled for further analysis. This set
includes the 6538 genes predicted by Otto on
the basis of matches to known genes, 11,226
transcripts predicted by Otto based on homol-
ogy evidence, and 8619 from the subset of
transcripts from de novo gene-prediction pro-
grams that have two types of supporting ev-
idence. The 26,383 genes are illustrated along
chromosome diagrams in Fig. 1. These are a
very preliminary set of annotations and are
subject to all the limitations of an automated
process. Considerable refinement is still nec-
essary to improve the accuracy of these tran-
script predictions. All the predictions and
descriptions of genes and the associated evi-
dence that we present are the product of
completely computational processes, not ex-
pert curation. We have attempted to enumer-
ate the genes in the human genome in such a
way that we have different levels of confi-
dence based on the amount of supporting
evidence: known genes, genes with good pro-
tein or EST homology evidence, and de novo
gene predictions confirmed by modest ho-
mology evidence.

3.4 Features of human gene
transcripts

We estimate the average span for a “typi-
cal” gene in the human DNA sequence to
be about 27,894 bases. This is based on the
average span covered by RefSeq tran-
scripts, used because it represents our high-
est confidence set.

The set of transcripts promoted to gene
annotations varies in a number of ways. As
can be seen from Table 8 and Fig. 9, tran-
scripts predicted by Otto tend to be longer,
having on average about 7.8 exons, whereas
those promoted from gene-prediction pro-
grams average about 3.7 exons. The largest
number of exons that we have identified in a
transcript is 234 in the titin mRNA. Table 8
compares the amounts of evidence that sup-
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port the Otto and other predicted transcripts.
For example, one can see that a typical Otto
transcript has 6.99 of'its 7.81 exons supported
by protein homology evidence. As would be
expected, the Otto transcripts generally have
more support than do transcripts predicted by
the de novo methods.

4 Genome Structure

Summary. This section describes several of
the noncoding attributes of the assembled
genome sequence and their correlations with
the predicted gene set. These include an anal-
ysis of G+C content and gene density in the
context of cytogenetic maps of the genome,
an enumerative analysis of CpG islands, and
a brief description of the genome-wide repet-
itive elements.

4.1 Cytogenetic maps

Perhaps the most obvious, and certainly the
most visible, element of the structure of
the genome is the banding pattern produced
by Giemsa stain. Chromosomal banding
studies have revealed that about 17% to
20% of the human chromosome comple-
ment consists of C-bands, or constitutive
heterochromatin (64). Much of this hetero-
chromatin is highly polymorphic and con-
sists of different families of alpha satellite
DNAs with various higher order repeat
structures (65). Many chromosomes have
complex inter- and intrachromosomal du-
plications present in pericentromeric re-
gions (66). About 5% of the sequence reads
were identified as alpha satellite sequences;
these were not included in the assembly.
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Fig. 8. Analysis of split genes resulting from different annotation methods. A set of 4512
Sim4-based alignments of RefSeq transcripts to the genomic assembly were chosen (see the text
for criteria), and the numbers of overlapping Genscan, Otto (RefSeq only) annotations based solely
on Sim4-polished RefSeq alignments, and Otto (homology) annotations (annotations produced by
supplying all available evidence to Genscan) were tallied. These data show the degree to which
multiple Genscan predictions and/or Otto annotations were associated with a single RefSeq
transcript. The zero class for the Otto-homology predictions shown here indicates that the
Otto-homology calls were made without recourse to the RefSeq transcript, and thus no Otto call

was made because of insufficient evidence.

Table 8. Numbers of exons and transcripts supported by various types of evidence for Otto and de novo gene prediction methods. Highlighted cells indicate
the gene sets analyzed in this paper (boldface, set of genes selected for protein analysis; italic, total set of accepted de novo predictions).

Types of evidence

No. of lines of evidence*

Total
Mouse Rodent Protein Human =1 =2 =3 =4
Otto Number of 17,969 17,065 14,881 15,477 16,374 17,9687 17,501 15,877 12,451
transcripts
Number of 141,218 111,174 89,569 108,431 118,869 140,710 127,955 99,574 59,804
exons
De novo Number of 58,032 14,463 5,094 8,043 9,220 21,350 8,619 4,947 1,904
transcripts
Number of 319,935 48,594 19,344 26,264 40,104 79,148 31,130 17,508 6,520
exons
No. of exons per Otto 7.84 5.77 6.01 6.99 7.24 7.81 7.19 6.00 4.28
transcript De novo 5.53 3.17 3.80 3.27 4.36 3.7 3.56 3.42 3.16

*Four kinds of evidence (conservation in 3X mouse genomic DNA, similarity to human EST or cDNA, similarity to rodent EST or cDNA, and similarity to known proteins) were

considered to support gene predictions from the different methods. The use of evidence is quite liberal, requiring only a partial match to a single exon of predicted transcript.

number includes alternative splice forms of the 17,764 genes mentioned elsewhere in the text.
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