
types present in subjects of different ethnogeo-
graphic origins, providing insights into popula-
tion history and migration patterns. Although
such studies have suggested that modern human
lineages derive from Africa, many important
questions regarding human origins remain un-
answered, and more analyses using detailed
SNP maps will be needed to settle these con-
troversies. In addition to providing evidence for
population expansions, migration, and admix-
ture, SNPs can serve as markers for the extent
of evolutionary constraint acting on particular
genes. The correlation between patterns of in-
traspecies and interspecies genetic variation
may prove to be especially informative to iden-
tify sites of reduced genetic diversity that may
mark loci where sequence variations are not
tolerated.

The remarkable heterogeneity in SNP
density implies that there are a variety of
forces acting on polymorphism—sparse re-
gions may have lower SNP density because
the mutation rate is lower, because most of
those regions have a lower fraction of muta-
tions that are tolerated, or because recent
strong selection in favor of a newly arisen
allele “swept” the linked variation out of the
population (165). The effect of random ge-
netic drift also varies widely across the ge-
nome. The nonrecombining portion of the Y
chromosome faces the strongest pressure
from random drift because there are roughly
one-quarter as many Y chromosomes in the
population as there are autosomal chromo-
somes, and the level of polymorphism on the
Y is correspondingly less. Similarly, the X
chromosome has a smaller effective popu-
lation size than the autosomes, and its nu-
cleotide diversity is also reduced. But even
across a single autosome, the effective pop-
ulation size can vary because the density of
deleterious mutations may vary. Regions of
high density of deleterious mutations will
see a greater rate of elimination by selec-
tion, and the effective population size will
be smaller (166 ). As a result, the density of
even completely neutral SNPs will be lower
in such regions. There is a large literature
on the association between SNP density
and local recombination rates in Drosoph-
ila, and it remains an important task to
assess the strength of this association in the
human genome, because of its impact on
the design of local SNP densities for dis-
ease-association studies. It also remains an
important task to validate SNPs on a
genomic scale in order to assess the degree
of heterogeneity among geographic and
ethnic populations.

8.4 Genome complexity
We will soon be in a position to move away
from the cataloging of individual compo-
nents of the system, and beyond the sim-
plistic notions of “this binds to that, which

then docks on this, and then the complex
moves there. . . .” (167 ) to the exciting area
of network perturbations, nonlinear re-
sponses and thresholds, and their pivotal
role in human diseases.

The enumeration of other “parts lists” re-
veals that in organisms with complex nervous
systems, neither gene number, neuron number,
nor number of cell types correlates in any
meaningful manner with even simplistic mea-
sures of structural or behavioral complexity.
Nor would they be expected to; this is the realm
of nonlinearities and epigenesis (168). The 520
million neurons of the common octopus exceed
the neuronal number in the brain of a mouse by
an order of magnitude. It is apparent from a
comparison of genomic data on the mouse and
human, and from comparative mammalian neu-
roanatomy (169), that the morphological and
behavioral diversity found in mammals is un-
derpinned by a similar gene repertoire and sim-
ilar neuroanatomies. For example, when one
compares a pygmy marmoset (which is only 4
inches tall and weighs about 6 ounces) to a
chimpanzee, the brain volume of this minute
primate is found to be only about 1.5 cm3, two
orders of magnitude less than that of a chimp
and three orders less than that of humans. Yet
the neuroanatomies of all three brains are strik-
ingly similar, and the behavioral characteristics
of the pygmy marmoset are little different from
those of chimpanzees. Between humans and
chimpanzees, the gene number, gene structures
and functions, chromosomal and genomic or-
ganizations, and cell types and neuroanatomies
are almost indistinguishable, yet the develop-
mental modifications that predisposed human
lineages to cortical expansion and development
of the larynx, giving rise to language, culminat-
ed in a massive singularity that by even the
simplest of criteria made humans more com-
plex in a behavioral sense.

Simple examination of the number of neu-
rons, cell types, or genes or of the genome
size does not alone account for the differenc-
es in complexity that we observe. Rather, it is
the interactions within and among these sets
that result in such great variation. In addition,
it is possible that there are “special cases” of
regulatory gene networks that have a dispro-
portionate effect on the overall system. We
have presented several examples of “regula-
tory genes” that are significantly increased in
the human genome compared with the fly and
worm. These include extracellular ligands
and their cognate receptors (e.g., wnt, friz-
zled, TGF-b, ephrins, and connexins), as well
as nuclear regulators (e.g., the KRAB and
homeodomain transcription factor families),
where a few proteins control broad develop-
mental processes. The answers to these
“complexities” perhaps lie in these expanded
gene families and differences in the regulato-
ry control of ancient genes, proteins, path-
ways, and cells.

8.5 Beyond single components
While few would disagree with the intuitive
conclusion that Einstein’s brain was more
complex than that of Drosophila, closer com-
parisons such as whether the set of predicted
human proteins is more complex than the
protein set of Drosophila, and if so, to what
degree, are not straightforward, since protein,
protein domain, or protein-protein interaction
measures do not capture context-dependent
interactions that underpin the dynamics un-
derlying phenotype.

Currently, there are more than 30 different
mathematical descriptions of complexity (170).
However, we have yet to understand the math-
ematical dependency relating the number of
genes with organism complexity. One pragmat-
ic approach to the analysis of biological sys-
tems, which are composed of nonidentical ele-
ments (proteins, protein complexes, interacting
cell types, and interacting neuronal popula-
tions), is through graph theory (171). The ele-
ments of the system can be represented by the
vertices of complex topographies, with the edg-
es representing the interactions between them.
Examination of large networks reveals that they
can self-organize, but more important, they can
be particularly robust. This robustness is not
due to redundancy, but is a property of inho-
mogeneously wired networks. The error toler-
ance of such networks comes with a price; they
are vulnerable to the selection or removal of a
few nodes that contribute disproportionately to
network stability. Gene knockouts provide an
illustration. Some knockouts may have minor
effects, whereas others have catastrophic effects
on the system. In the case of vimentin, a sup-
posedly critical component of the cytoplasmic
intermediate filament network of mammals, the
knockout of the gene in mice reveals them to be
reproductively normal, with no obvious pheno-
typic effects (172), and yet the usually conspic-
uous vimentin network is completely absent.
On the other hand, ;30% of knockouts in
Drosophila and mice correspond to critical
nodes whose reduction in gene product, or total
elimination, causes the network to crash most
of the time, although even in some of these
cases, phenotypic normalcy ensues, given the
appropriate genetic background. Thus, there are
no “good” genes or “bad” genes, but only net-
works that exist at various levels and at differ-
ent connectivities, and at different states of
sensitivity to perturbation. Sophisticated math-
ematical analysis needs to be constantly evalu-
ated against hard biological data sets that spe-
cifically address network dynamics. Nowhere is
this more critical than in attempts to come to
grips with “complexity,” particularly because
deconvoluting and correcting complex net-
works that have undergone perturbation, and
have resulted in human diseases, is the greatest
significant challenge now facing us.

It has been predicted for the last 15 years
that complete sequencing of the human ge-
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nome would open up new strategies for hu-
man biological research and would have a
major impact on medicine, and through med-
icine and public health, on society. Effects on
biomedical research are already being felt.
This assembly of the human genome se-
quence is but a first, hesitant step on a long
and exciting journey toward understanding
the role of the genome in human biology. It
has been possible only because of innova-
tions in instrumentation and software that
have allowed automation of almost every step
of the process from DNA preparation to an-
notation. The next steps are clear: We must
define the complexity that ensues when this
relatively modest set of about 30,000 genes is
expressed. The sequence provides the frame-
work upon which all the genetics, biochem-
istry, physiology, and ultimately phenotype
depend. It provides the boundaries for scien-
tific inquiry. The sequence is only the first
level of understanding of the genome. All
genes and their control elements must be
identified; their functions, in concert as well
as in isolation, defined; their sequence varia-
tion worldwide described; and the relation
between genome variation and specific phe-
notypic characteristics determined. Now we
know what we have to explain.

Another paramount challenge awaits:
public discussion of this information and its
potential for improvement of personal health.
Many diverse sources of data have shown
that any two individuals are more than 99.9%
identical in sequence, which means that all
the glorious differences among individuals in
our species that can be attributed to genes
falls in a mere 0.1% of the sequence. There
are two fallacies to be avoided: determinism,
the idea that all characteristics of the person
are “hard-wired” by the genome; and reduc-
tionism, the view that with complete knowl-
edge of the human genome sequence, it is
only a matter of time before our understand-
ing of gene functions and interactions will
provide a complete causal description of hu-
man variability. The real challenge of human
biology, beyond the task of finding out how
genes orchestrate the construction and main-
tenance of the miraculous mechanism of our
bodies, will lie ahead as we seek to explain
how our minds have come to organize
thoughts sufficiently well to investigate our
own existence.
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